ORE1 balances leaf senescence against maintenance by antagonizing G2-like-mediated transcription.

نویسندگان

  • Mamoona Rauf
  • Muhammad Arif
  • Hakan Dortay
  • Lilian P Matallana-Ramírez
  • Mark T Waters
  • Hong Gil Nam
  • Pyung-Ok Lim
  • Bernd Mueller-Roeber
  • Salma Balazadeh
چکیده

Leaf senescence is a key physiological process in all plants. Its onset is tightly controlled by transcription factors, of which NAC factor ORE1 (ANAC092) is crucial in Arabidopsis thaliana. Enhanced expression of ORE1 triggers early senescence by controlling a downstream gene network that includes various senescence-associated genes. Here, we report that unexpectedly ORE1 interacts with the G2-like transcription factors GLK1 and GLK2, which are important for chloroplast development and maintenance, and thereby for leaf maintenance. ORE1 antagonizes GLK transcriptional activity, shifting the balance from chloroplast maintenance towards deterioration. Our finding identifies a new mechanism important for the control of senescence by ORE1.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gene regulatory cascade of senescence-associated NAC transcription factors activated by ETHYLENE-INSENSITIVE2-mediated leaf senescence signalling in Arabidopsis

Leaf senescence is a finely tuned and genetically programmed degeneration process, which is critical to maximize plant fitness by remobilizing nutrients from senescing leaves to newly developing organs. Leaf senescence is a complex process that is driven by extensive reprogramming of global gene expression in a highly coordinated manner. Understanding how gene regulatory networks involved in co...

متن کامل

Nitric oxide induces cotyledon senescence involving co-operation of the NES1/MAD1 and EIN2-associated ORE1 signalling pathways in Arabidopsis

After germination, cotyledons undertake the major role in supplying nutrients to the pre-photoautorophy angiosperm seedlings until they senesce. Like other senescence processes, cotyledon senescence is a programmed degenerative process. Nitric oxide can induce premature cotyledon senescence in Arabidopsis thaliana, yet the underlying mechanism remains elusive. A screen for genetic mutants ident...

متن کامل

EIN3 and ORE1 Accelerate Degreening during Ethylene-Mediated Leaf Senescence by Directly Activating Chlorophyll Catabolic Genes in Arabidopsis

Degreening, caused by chlorophyll degradation, is the most obvious symptom of senescing leaves. Chlorophyll degradation can be triggered by endogenous and environmental cues, and ethylene is one of the major inducers. ETHYLENE INSENSITIVE3 (EIN3) is a key transcription factor in the ethylene signaling pathway. It was previously reported that EIN3, miR164, and a NAC (NAM, ATAF, and CUC) transcri...

متن کامل

Ethylene-insensitive3 is a senescence-associated gene that accelerates age-dependent leaf senescence by directly repressing miR164 transcription in Arabidopsis.

Numerous endogenous and environmental signals regulate the intricate and highly orchestrated process of plant senescence. Ethylene is a well-known inducer of senescence, including fruit ripening and flower and leaf senescence. However, the underlying molecular mechanism of ethylene-induced leaf senescence remains to be elucidated. Here, we examine ethylene-insensitive3 (EIN3), a key transcripti...

متن کامل

NAC transcription factor ORE1 and senescence-induced BIFUNCTIONAL NUCLEASE1 (BFN1) constitute a regulatory cascade in Arabidopsis.

Senescence is a highly regulated process that involves the action of a large number of transcription factors. The NAC transcription factor ORE1 (ANAC092) has recently been shown to play a critical role in positively controlling senescence in Arabidopsis thaliana; however, no direct target gene through which it exerts its molecular function has been identified previously. Here, we report that BI...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • EMBO reports

دوره 14 4  شماره 

صفحات  -

تاریخ انتشار 2013